Development of a Movable Wall Shoot House for Small Arms and Grenade Training

28-31 Aug 00 Mr. Brad L. Huntsman, Terran Corporation, Beavercreek, OH Mr. Joe G. Tom and Dr. Philip G. Malone US Army Engineers Research and Development Center Vicksburg, MS

Uses of SACON in Training Facilities

Background

- Corps of Engineers has developed different types of shockabsorbing concrete (SACON)for weapons testing and live-fire training
- SACON is a foamed, fiber-reinforced concrete that will not produce ricochets when fired on
- New Developments
 - New Lower Cost SACON Mixture Produced
 - SACON Tunnel Bullet Traps Installed
 - New Shoot Houses/Grenade House Design with Fixed Selfsupporting Panels Produced
 - Moveable Panel Block Demonstrated

Background Information on Shock-Absorbing Concrete

Corps of Engineers developed different types of shockabsorbing concrete (SACON)for weapons testing

SACON has become popular in bullet barriers

How SACON Absorbs Impacts

- Density is one-half that of conventional concrete
- No coarse aggregate
- Fiber produces toughness
- Concrete crushes on impact

Effects of Multiple Impacts on the Same Point in SACON

- Multiple impacts on the same point do not produce ricochets
- A pocket of debris forms
- The pocket moves deeper into the foamed concrete
- Even in multiple impact most (>85%) of the debris remains in the block

Proportioning of Materials for 90 pcf Polypropylene Fiber-Reinforced SACON

Cement (ASTM Types I-II)972 lbs./cu.yd.Water466 lbs./cu.yd.Sand972 lbs./cu.yd.Stabilizer0.27 lbs./cu.yd.Fiber14.8 lbs./cu.yd.Foam8.9 cu.ft./cu.yd.

Compressive Strength vs Density

- Increasing density increases strength
- Changing the amount of foam added to the sandcement paste changes the density and strength
- Most useful materials are in the 70 to 90 pcf range

Where SACON Can Be Useful

- Live-fire shoot houses and grenade houses
- Bullet traps for lead and/or tungsten (green bullet) recovery on conventional ranges
- Land-based and ship-borne live fire facilities of all kinds
- Barriers for reduction of safety fans in live-fire exercises
- Back-up walls in exercises that use shoot-through materials such as plywood, plastic, glass or sheet metal

Where SACON Can Be Useful (cont.)

- Barriers to collect fragments produced in blasting
- Three-dimensional stationary or movable targets
- Protective structures for video cameras or weapon simulators
- Safe realistic rubble for combat scenarios

Shock-Absorbing Concrete (SACON) Shoot House

- Made with foamed, fiber-reinforced concrete panels
- All metal supports covered
- Metal attachment plates in top and bottom
- No rebar

Interior of SACON Shoot-House

- Safe, no ricochets
- Fire resistant
- Resists vermin
- Can be used with grenades

SACON Huts

- Live-fire training structures
- Realistic exercises with tracers permitted
- Rapidly assembled by bonding cast-on-site SACON panels
- Tip-up construction techniques can be used with SACON

Single-Story SACON Building

- Cast-in-place with continuous formwork
- SACON pumped into formwork
- Door and windows built into the formwork
- Work done with troop labor

Tank Made from SACON

SACON Target Backstops/Bullet Traps

- Can absorb bullet impacts from thousands of rounds of ammunition
- Tracer rounds and deflagrating rounds can be used
- Alkalinity of concrete reduces lead leaching
- Only practical method of recycling the new "green bullet"

Natural Features Can Be Reproduced in SACON

 Mock-ups of tree stumps, rock crops, and other natural features can be produced

SACON can be--

- molded into almost any shape
- pigmented to have color throughout the object
- painted to disguise the surface

SACON Tunnel Bullet Traps Ft. Jackson, SC

Conventional berms on a 25-meter range wash out quickly at the bullet impact points

Maintenance requirements are high

Lead-contaminated soil washes from range.

Simple, inexpensive, low maintenance traps reduce the requirement to regrade the berms

Spent bullets are retained in tunnel--no wash-outs

SACON Traps and the Green Bullet

- The cost of tungsten requires that the "green bullets" be collected and recycled (common impact areas cannot be used)
- SACON traps offer the best performance in collecting intact bullets
- SACON traps can be made secure to prevent pilfering of tungsten (tungsten is worth \$30/lb as scrap, lead is worth \$0.30/lb as scrap)

New Movable Wall Shoot House Panel Design

Fixed Wall Shoot House/ Grenade House

One training scenario Crane required for servicing structure. Roof is not practical Floor is packed sand

Movable Wall Shoot House/ Grenade House

Panels can be moved with a forklift Training scenarios can be changed quickly Can be assembled under cover (warehouse or hangar) Floor is SACON blocks for better footing

New Movable Wall Shoot House Design

Can be assembled into any configuration of rooms

Crane or forklift can be used for positioning

> Not to Scale

Summary

- SACON is prepared using conventional mixers and ordinary Portland cement
- Water-based foam, fiber and thickeners are the only additional components
- Extremely versatile--material has a range of densities and can be cast in any shape or color
- Construction techniques are similar to conventional concrete (block, pre-cast panels, or cast-in-place)
- Used SACON generally considered construction waste -- non-hazardous and non-flammable

Summary (cont.)

- Less expensive concrete
 formulation allows us to do more
 construction on same budget
- SACON bullet traps reduce range maintenance
- Self-supporting and moveable panels provide safe, realistic training structures
- Approaching the goal of building facilities that allow us to training anywhere, any time using the same weapons we fight with

Points of Contact for SACON

Mr. Brad L. Huntsman Terran Corporation 4080 Executive Drive Beavercreek, OH 45430-1061 e-mail blhuntsman@terrancorp.com

Mr. Joe G. Tom Geotechnical Structures Laboratory U.S. Army Engineer Research and Development Center Vicksburg, MS 39180-6199 Phone: 601-634-3278 e-mail tomj@mail.wes.army.mil

Dr. Philip G. Malone Phone: 601-634-3960 e-mail malonep@mail.wes.army.mil

