USGS News

Sampling and Monitoring for the Mine Life Cycle Handbook Now Available

Summary: The sixth of a series of handbooks on technologies for management of metal mining influenced water is now available online from the Society of Mining, Metallurgy & Exploration Inc

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 ); Kathy Smith ( Phone: 303-236-5788 );



The sixth of a series of handbooks on technologies for management of metal mining influenced water is now available online from the Society of Mining, Metallurgy & Exploration Inc.

“This volume was prepared through the Acid Drainage Technology Initiative–Metal Mining Sector (ADTI-MMS), which includes USGS mine drainage expertise, other federal and state agencies, industry, and academia, to develop a handbook with an approach for environmental sampling and characterization throughout the mine life cycle,” said Kathy Smith, U.S. Geological Survey research geologist and co-editor of the new publication. 

This handbook supplements and enhances current environmental mine sampling and monitoring literature and provides an awareness of the specialized approach necessary for environmental sampling and monitoring at mining sites. It differs from most information sources by providing an approach to address mining influenced water and other sampling media throughout the mine life cycle. 

Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices, including an appendix containing technical summaries written by subject-matter experts that describes various analytical, measurement and collection procedures. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies and to suggest resources for further information. Extensive references are included. 

For more information about USGS minerals research, please visit the website.

USGS Model Provides Insight into Snake Valley's Groundwater

Summary: Proposed increases in water withdrawals in Snake Valley and surrounding areas will likely result in declining groundwater levels and a decrease in natural discharge to springs, according to a new U.S. Geological Survey (USGS) study and simulation model

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 ); Melissa Masbruch ( Phone: 801-908-5068 );



Proposed increases in water withdrawals in Snake Valley and surrounding areas will likely result in declining groundwater levels and a decrease in natural discharge to springs, according to a new U.S. Geological Survey (USGS) study and simulation model.

Local water users and Utah resource managers have considered the effects of groundwater withdrawals on Snake Valley aquifers since the Southern Nevada Water Authority proposed developing unappropriated groundwater resources in Snake Valley and adjacent basins in eastern Nevada.

“Because of the magnitude of the proposed development project and the interconnected nature of groundwater basins in the region, there have been concerns that new pumping will disrupt Snake Valley's groundwater supplies and threaten the wetlands and ranches that rely upon them,” said Melissa Masbruch, USGS scientist and lead author of the new report. “This study can help assess the effects of future groundwater withdrawals on groundwater resources in the Snake Valley area.”

A new computer model, developed as part of the USGS study, simulates groundwater flow between Snake Valley and adjacent areas, and provides estimates of the degree of connectivity between hydrographic areas. The model indicates that increased groundwater withdraw­als within areas that are highly connected to one another would likely affect groundwater levels and discharge to springs through a large part of the study area, including areas adjacent to Snake Valley.

This USGS study represents one of the first regional model-simulation tools that have been calibrated to groundwater temperatures.

“The use of temperature observations in the development of the model reduced model uncertainty for factors controlling recharge, discharge, and groundwater movement,” said Masbruch. “This new model represents a more robust quantification of groundwater availability than previous studies because the model integrates all compo­nents of the groundwater budget.” 

USGS Continues to Measure Flooding in Arizona

Summary: Reporters: Do you want to interview a USGS scientist as they measure flooding? Please contact Jim Leenhouts or Jennifer LaVista.

Contact Information:

Jim Leenhouts ( Phone: 520-668-6348 ); Emmet McGuire ( Phone: 520-670-6671 x 284 ); Jennifer LaVista ( Phone: 303-202-4764 );



Reporters: Do you want to interview a USGS scientist as they measure flooding? Please contact Jim Leenhouts or Jennifer LaVista.

Scientists and technicians from the U.S. Geological Survey will be conducting field studies of flood flows from the recent heavy rains resulting from Tropical Storm Odile today.

Who: USGS field crews

Where: San Pedro River at Palominas and near Charleston

What: Collection of flood measurements

When: Today  

Additional Information

Media Advisory: Earthquake 101: Resources for Reporting on Earthquakes

Summary: SECOND NOTICE:  Media Advisory – Save the Date MENLO PARK, Calif. — The U.S. Geological Survey will host an educational event for the news media focused on earthquakes on Wednesday September 24, 2014. The goal of the event is to provide the press an opportunity to work with USGS staff to build knowledge about and confidence in our information delivery systems and people to create more timely and accurate reporting of earthquakes. 

Contact Information:

Susan  Garcia ( Phone: 650-346-0998 ); Leslie  Gordon ( Phone: 650-329-4006 );



SECOND NOTICE:  Media Advisory – Save the Date

MENLO PARK, Calif. — The U.S. Geological Survey will host an educational event for the news media focused on earthquakes on Wednesday September 24, 2014. The goal of the event is to provide the press an opportunity to work with USGS staff to build knowledge about and confidence in our information delivery systems and people to create more timely and accurate reporting of earthquakes. 

At this event, USGS scientists and public affairs staff will lead sessions in which journalists can refresh knowledge about basic principles about earthquakes, how to improve scientific accuracy when reporting on earthquakes, and about USGS resources to make your job easier. Find out about USGS public domain maps, images, and graphics that can be quickly and freely downloaded and reused following an earthquake. 

Who: USGS geologists, geophysicists, and public affairs. See list below.

What: 30-minute plenary session with presentations on reporting on earthquakes and relevant USGS resources, followed by concurrent small group discussions with USGS researchers on various aspects of earthquake science. Subjects will include:
  • Earthquake Early Warning vs. Earthquake Prediction, by Doug Given, Geophysicist
  • Natural vs. Induced Seismicity, by Justin Rubinstein, Geophysicist
  • Emerging New Technology: GPS, InSAR, LiDAR, by Ben Brooks, Geologist
  • Shaking Intensity versus Earthquake Magnitude, by Brad Aagaard, Geophysicist
  • Liquefaction, Landslides, & Fault Rupture, by Tom Holzer, Engineering Geologist
  • USGS Real-time Online Earthquake Products, by David Wald, Geophysicist
  • Is the Number of Large Earthquakes Increasing? by Jeanne Hardebeck, Geophysicist
  • Earthquake Resources on the Web, by Lisa Wald, Geophysicist/Web Content Manager, Webmaster
  • Foreshocks, Main Shocks, and Aftershocks, by Andrea Llenos, Geophysicist and Ruth Harris, Geophysicist
  • Who/how/when and where to go for an interview concerning an earthquake, by Leslie Gordon, Public Affairs Specialist and Susan Garcia, Outreach Coordinator 

When: Wednesday, September 24, 2014, 10:00 a.m. – 11:30 a.m. PDT

Registration:   Please register online to participate in the workshop.

Where: U.S. Geological Survey
Main Auditorium, Bldg. 3, 2nd floor
345 Middlefield Road, Menlo Park, Calif.

Online: The first 30 minutes of the event will be live video-streamed over the web, and archived online for later viewing.

Streamgages Measure Drought, Earthquake Impacts on Water

Summary: While the national streamflow database is documenting evidence of California’s historic drought, the database is also confirming another recently seen hydrologic phenomenon: earthquake-induced increases in streamflow

Contact Information:

Laurel  Rogers ( Phone: 619-980-6527 ); Leslie  Gordon ( Phone: 650-329-4006 );



Hydrograph showing stream flow in cubic feet per second on USGS streamgage on Sonoma Creek near Agua Caliente, from about August 23 - September 13, 2014. The sharp rise starting on August 24 reflects an increased streamflow due to the South Napa Earthquake. (High resolution image) Hydrograph showing stream flow in cubic feet per second on USGS streamgage on Sonoma Creek near Agua Caliente, from April 1 - mid-September, 2014. The steady decline in streamflow reflects current drought conditions in California. The sharp decrease and increase aroundAugust 1 is a regional trend, reflecting an upstream irrigation diversion.The sharp rise starting on August 24 reflects an increased streamflow due to the South Napa Earthquake. (High resolution image) Hydrograph showing an increase of gage-height in feet (.01 increments) at the Sonoma Creek at Agua Caliente gage, in the early morning of August 24, 2014. The sharp rise in water level between 4:15 - 4:30 a.m. reflects an increased streamflow due to the South Napa Earthquake an hour earlier. (High resolution image)

SACRAMENTO, Calif. — While the national streamflow database is documenting evidence of California’s historic drought, the database is also confirming another recently seen hydrologic phenomenon: earthquake-induced increases in streamflow.

Rivers and streams across California are flowing at record lows. Streamflow data from 182 U.S. Geological Survey streamgages in California with at least 30 years of record, currently show that 62 percent of streamgages are recording flows less 25 percent of normal, and 44 percent are recording flows less than 10 percent of normal. At several streamgage sites, scientists have had to extend measurement scales and rating formulas that help calculate accurate streamflow, because of record low water flows.

Hydrograph showing an increase of gage-height in feet (.01 increments) at the Sonoma Creek at Agua Caliente gage, in the early morning of August 24, 2014. The sharp rise in water level between 4:15 - 4:30 a.m. reflects an increased streamflow due to the South Napa Earthquake an hour earlier. (High resolution image)

Meanwhile, in the aftermath of the August 24 magnitude 6.0 South Napa Earthquake in California, water has begun to flow again in some previously-dry surrounding creeks, rivers and streams prompting many nearby residents to scratch their heads.

Hydrogeologic responses to earthquakes have been known by scientists for decades. In the case of the South Napa Earthquake, the discharge of springs and groundwater to some streams has increased. Based on experience in previous earthquakes, stream and spring flows are expected to decline again over the next several months, assuming that the Napa region does not get significant rainfall over that time period.

Post-earthquake changes in streamflow were recorded at a USGS streamgage on Sonoma Creek, near the city of Sonoma where measured increases in streamflow began after 4:15 a.m. on August 24, about an hour after the earthquake occurred. Streamflow has increased intermittently since the earthquake from 0.1 cubic feet per second to nearly 3 cfs on September 12. The median historical streamflow for this time period is about 0.5 cfs. Scientists theorize that this increase in streamflow is due to groundwater flow entering the river, and the intermittent nature of the streamflow is due to the non-uniform release of groundwater across the basin. 

Related Links and Resources

Getting Out of Harm's Way: Evacuation from Tsunamis

Summary: Scientists at the U.S. Geological Survey have developed a new mapping tool, the Pedestrian Evacuation Analyst, for use by researchers and emergency managers to estimate how long it would take for someone to travel on foot out of a tsunami-hazard zone

Contact Information:

Leslie  Gordon ( Phone: 650-329-4006 );



MENLO PARK, Calif. — Scientists at the U.S. Geological Survey have developed a new mapping tool, the Pedestrian Evacuation Analyst, for use by researchers and emergency managers to estimate how long it would take for someone to travel on foot out of a tsunami-hazard zone. The GIS software extension, released this week, allows the user to create maps showing travel times out of hazard zones and to determine the number of people that may or may not have enough time to evacuate. The maps take into account the elevation changes and the different types of land cover that a person would encounter along the way.

Maps of travel time can be used by emergency managers and community planners to identify where to focus evacuation training and tsunami education. The tool can also be used to examine the potential benefits of vertical evacuation structures, which are buildings or berms designed to provide a local high ground in low-lying areas of the hazard zone. 

The Pedestrian Evacuation Analyst software can assist communities with tsunami planning by answering questions such as:

  • How long could it take for people to evacuate out of tsunami-hazard zones?
  • Will people have enough time to evacuate before the first tsunami waves arrive?
  • If people don’t have enough time to evacuate, then where could vertical-evacuation refuges provide high ground?
  • How do you compare the benefits of multiple sites for potential vertical-evacuation refuges?

“The tool can be used to provide valuable decision support for tsunami evacuation planning and vertical evacuation siting, which is just in the beginning stages in the U.S. Pacific Northwest,” said Jeanne Jones, USGS geographer who led the development of the software tool.  The tool has enabled USGS researchers to better understand various aspects of community vulnerability to tsunamis, including community comparisons based on evacuation times, vertical-evacuation decision support, the impact of post-tsunami recovery decisions, and the evacuation challenges posed by different types of tsunami threats.

The software tool can be downloaded online, and the complete users guide, “The pedestrian evacuation analyst—Geographic information systems software for modeling hazard evacuation potential” is also available online.

A graph comparing pedestrian evacuation time estimate for Ocean Shores and Aberdeen, WA. (high resolution image) Landcover map (left) and pedestrian evacuation time estimate map (right) Ocean Shores, WA. (high resolution image)

Media Advisory: USGS to Host Congressional Briefing: #Strong After Sandy—The Science Supporting the Department of the Interior’s Response

Summary: Department of the Interior scientists are generating and sharing critical information to aid the recovery of the areas impacted by Hurricane Sandy, helping to protect our valuable coastal resources and to make communities more resilient against future extreme storms

Contact Information:

Hannah Hamilton ( Phone: 703-648-4356 (work) 703-314-1601 (cell) );



Department of the Interior scientists are generating and sharing critical information to aid the recovery of the areas impacted by Hurricane Sandy, helping to protect our valuable coastal resources and to make communities more resilient against future extreme storms. Moving forward DOI is positioned to help answer questions such as: What locations along the coast are forecasted to be the most vulnerable to future hurricanes? What were the storm impacts to ecosystems, habitats, fish and wildlife? What is being learned about the importance of undeveloped land? Come learn how the U.S. Geological Survey and its partners are working to assemble and apply better data to keep citizens safe.

Speakers:

  • Neil K. Ganju –  Research Oceanographer, U.S. Geological Survey
  • Mary Foley – Regional Chief Scientist, Northeast Region, National Park Service
  • Eric Schrading – New Jersey Field Office Supervisor,  U.S. Fish and Wildlife Service

Emcee:

Claude Gascon, Executive Vice President and Chief Science Officer, National Fish and Wildlife Foundation

Where:

Rayburn House Office Building, Room 2325, Washington, D.C.

When:

Friday, September 19, 2014 – 11:00 a.m.

Host:

Refreshments provided courtesy of the National Fish and Wildlife Foundation

To learn how USGS is combining interdisciplinary science with state-of-the-art technologies to achieve a comprehensive understanding of coastal change caused by Hurricane Sandy, read our new fact sheet: Using Science to Strengthen our Nation’s Resilience to Tomorrow’s Challenges—Understanding and Preparing for Coastal Impacts.

New Oregon Maps Feature National Scenic Trails

Summary: Newly released US Topo maps for Oregon now feature segments of the Pacific Crest National Scenic Trail

Contact Information:

Mark Newell, APR ( Phone: 573-308-3850 ); Larry  Moore ( Phone: 303-202-4019 );



Newly released US Topo maps for Oregon now feature segments of the Pacific Crest National Scenic Trail. Several of the 1,835 new US Topo quadrangles for the state now display parts of the Trail along with other improved data layers.

“Having the Pacific Crest NST finally show up on Oregon US Topo maps is significant for all of the recreational users of the wild spaces the trail traverses,” said Tom Carlson, Geospatial Liaison for the Pacific Northwest. “Hiking the trail provides commanding views of the volcanic peaks of the Cascade Range as well as the verdant forests of the western side of the mountains and down into the farmlands of the Willamette Valley. You also see parts of the open Ponderosa Pine forest and high desert on the eastern slopes of the mountains.”

The Pacific Crest National Scenic Trail is a treasured pathway through some of the most scenic terrain in the nation. Beginning in southern California at the Mexican border, the PCT travels a total distance of 2,650 miles through California, Oregon, and Washington until reaching the Canadian border. The PCT is one of the original National Scenic Trails established by Congress in the 1968 National Trails System Act and fifty-four percent of the trail lies within designated wilderness.

The USGS partnered with the U.S. Forest Service to incorporate the trail onto the Oregon US Topo maps. This NST joins the Ice Age National Scenic Trail, the Pacific Northwest National Scenic Trail and the North Country National Scenic Trail as being featured on the new US Topo quads. The USGS hopes to eventually include all National Scenic Trails in The National Map products. 

These new maps replace the first edition US Topo maps for Oregon and are available for free download from The National Map and the USGS Map Locator & Downloader website.

Another important addition to the new Oregon US Topo maps in the inclusion of Public Land Survey System. PLSS is a way of subdividing and describing land in the US. All lands in the public domain are subject to subdivision by this rectangular system of surveys, which is regulated by the U.S. Department of the Interior.

To compare change over time, scans of legacy USGS topo maps, some dating back to the late 1800s, can be downloaded from the USGS Historical Topographic Map Collection

To download US Topo maps: http://nationalmap.gov/ustopo/

The National Trails System was established by Act of Congress in 1968. The Act grants the Secretary of Interior and the Secretary of Agriculture authority over the National Trails System. The Act defines four types of trails. Two of these types, the National Historic Trails and National Scenic Trails, can only be designated by Act of Congress. National scenic trails are extended trails located as to provide for maximum outdoor recreation potential and for the conservation and enjoyment of nationally significant scenic, historic, natural, and cultural qualities of the area through which such trails may pass.

There are 11 National Scenic Trails:
  • Appalachian National Scenic Trail
  • Pacific Crest National Scenic Trail
  • Continental Divide National Scenic Trail
  • North Country National Scenic Trail
  • Ice Age National Scenic Trail
  • Potomac Heritage National Scenic Trail
  • Natchez Trace National Scenic Trail
  • Florida National Scenic Trail
  • Arizona National Scenic Trail
  • New England National Scenic Trail
  • Pacific Northwest National Scenic Trail
(high resolution image) New 2014 US Topo quadrangle of the Three Fingered Jack, Oregon, area. Scale 1:24,000, with the orthoimagery layer turned on. (high resolution image) Scanned copy of the 1929 USGS Three Sister’s, Oregon, quadrangle. Scale 1:25,000 – from the USGS Historical Topographic Map Collection. (high resolution image)