USGS News

Value of U.S. Mineral Production Increases Despite Lower Metal Prices

Summary: The estimated value of mineral production increased in the United States in 2014, despite the decline in price for most precious metals, the U.S. Geological Survey announced today in its Mineral Commodity Summaries 2015.

Contact Information:

Steven Fortier ( Phone: 571-386-8587 ); Elizabeth Sangine ( Phone: 703-755-5960 ); Hannah Hamilton ( Phone: 703-314-1601 );



The estimated value of mineral production increased in the United States in 2014, despite the decline in price for most precious metals, the U.S. Geological Survey announced today in its Mineral Commodity Summaries 2015.

The estimated value of mineral raw materials produced at mines in the United States in 2014 was $77.6 billion, an increase of 4.6 percent from $74.2 billion in 2013.  U.S. economic growth supported the domestic primary metals industry and industrial minerals industry, however, weak global economic growth and the strong U.S. dollar limited U.S. processed mineral exports, which decreased to $108 billion in 2014 from $129 billion in 2013. Meanwhile, low-priced metal imports increased during most of 2014.

The annual report from the USGS is the earliest comprehensive source of 2014 mineral production data for the world. It includes statistics on about 90 mineral commodities essential to the U.S. economy and national security, and addresses events, trends, and issues in the domestic and international minerals industries.

"Decision-makers and policy-makers in the private and public sectors rely on the Mineral Commodity Summaries and other USGS minerals information publications as unbiased sources of information to make business decisions and national policy," said Steven M. Fortier, Director of the USGS National Minerals Information Center.

Mineral commodities remain an essential part of the U.S. economy, contributing to the real gross domestic product at several levels, including mining, processing and manufacturing finished products. The United States continues to rely on foreign sources for raw and processed mineral materials. In 2014, the supply for more than one-half of U.S. apparent consumption of 43 mineral commodities came from imports, increasing from 40 commodities in 2013. The United States was 100 percent import reliant for 19 of those commodities, including indium, niobium, and tantalum, which are among a suite of materials often designated as “critical” or “strategic.”

Mine production of 13 mineral commodities was worth more than $1 billion each in the United States in 2014. These were, in decreasing order of value, crushed stone, copper, gold, cement, construction sand and gravel, iron ore (shipped), industrial sand and gravel, molybdenum concentrates, phosphate rock, lime, salt, zinc, soda ash, and clays (all types).  The estimated value of U.S. industrial minerals mine production in 2014 was $46.1 billion, about 7 percent more than that of 2013. 

The estimated value of U.S. metal mine production in 2014 was $31.5 billion, slightly less than that of 2013. These raw materials and domestically recycled materials were used to process mineral materials worth $697 billion. These mineral materials, including aluminum, brick, copper, fertilizers, and steel, plus net imports of processed materials (worth about $41 billion) were, in turn, consumed by industries that use minerals to create products, with a value added to the U.S. economy of an estimated $2.5 trillion in 2014.

The construction industry continued to show signs of improvement in 2014, being led by nonresidential construction, with increased production and consumption of cement, construction sand and gravel, crushed stone, and gypsum mineral commodities.

In 2014, 12 states each produced more than $2 billion worth of nonfuel mineral commodities. These states were, in descending order of value—Arizona, Nevada, Minnesota, Texas, Utah, California, Alaska, Florida, Missouri, Michigan, Wyoming and Colorado. The mineral production of these states accounted for 62 percent of the U.S. total output value.

The USGS Mineral Resources Program delivers unbiased science and information to understand mineral resource potential, production, consumption, and how minerals interact with the environment. The USGS National Minerals Information Center collects, analyzes, and disseminates current information on the supply of and the demand for minerals and materials in the United States and about 180 other countries.

The USGS report Mineral Commodity Summaries 2015 is available online. Hardcopies will be available later in the year from the Government Printing Office, Superintendent of Documents. For ordering information, please call (202) 512-1800 or (866) 512-1800 or go online.

For more information on this report and individual mineral commodities, please visit the USGS National Minerals Information Center.

Citizen Scientists Submit More Than 100,000 Map Points

Summary: The U.S. Geological Survey citizen science project, The National Map Corps, has realized remarkable response. In less than two years, the volunteer-based project has harvested more than 100,000 “points” The USGS “crowd-sourcing” map project reaches major milestone

Contact Information:

Elizabeth McCartney ( Phone: 573-308-3696 ); Mark Newell ( Phone: 573-308-3850 );



The U.S. Geological Survey citizen science project, The National Map Corps, has realized remarkable response. In less than two years, the volunteer-based project has harvested more than 100,000 “points”. Hundreds of volunteer cartographers are making significant additions to the USGS ability to provide accurate mapping information to the public. 

Each point represents a structure or manmade feature on a map that has been verified and updated, and then submitted to support The National Map and US Topo maps.

Using crowd-sourcing techniques, the USGS Volunteer Geographic Information project known as The National Map Corps (TNMCorps) encourages citizen volunteers to collect manmade structure data in an effort to provide accurate and authoritative spatial map data for the USGS National Geospatial Program’s web-based map products.

“I am 80 years old. I work three days a week for a golf course trapping moles and gophers”, said a very prominent citizen scientist volunteer who goes by the handle of “Mole Trapper”. “I spent 11 years volunteering for a fish and wildlife agency. When the big landslide at Oso, Washington happened, I went on the USGS website and discovered the map corps. I worked summers while in high school for a surveyor who was very precise and he told me an inaccurate survey is worthless. I hate inaccurate maps, so this program was just right for me. I hope my work is as accurate as it can be, but if it isn't, I plead old age.”

Structures being updated include schools, hospitals, post offices, police stations and other important public buildings. The data currently being collected by volunteers becomes part of The National Map structures dataset, which is made available to users free of charge.

"I am retired from an unrelated field, but I have loved maps and travel all my life,” explained other highly active volunteer who goes by “fconley”. “When I saw that USGS was looking for volunteers I immediately joined, first of all working with paper maps and quads. As digital mapping, satellite imagery, and GPS became more available I was enthralled. With the imagery now accessible it is almost like being able to travel sitting at my desk. At times, locating structures seems similar to solving puzzles or detective work. This whole project is not only enjoyable but it makes me feel that I am making a lasting and useful contribution. I am thankful for the opportunity to be involved in this fascinating endeavor."

Beginning as a series of pilot projects in 2011, The National Map Corps has grown state-by-state to include the entire U.S. By August of 2013, volunteers were editing in every state in the country and the US territories. To date, the number of active volunteers has grown to 930 individuals, including some extremely energetic participants who have collected in excess of 6,000 points.

To show appreciation of the volunteers’ efforts, The National Map Corps has instituted a recognition program that awards “virtual" badges to volunteers. Each edit that is submitted is worth one point towards the badge level. The badges consist of a series of antique surveying instruments and images following the evolution of land survey and moving to aerial observation of the Earth’s surface such as pigeon-mounted cameras and hot air balloons. Additionally, volunteers are publically acknowledged (with permission) via TwitterFacebook and Google+.

Tools on TNMCorps web site explain how a volunteer can edit any area, regardless of their familiarity with the selected structures, and becoming a volunteer for TNMCorps is easy; go to The National Map Corps web site to learn more and to sign up as a volunteer. If you have access to the Internet and are willing to dedicate some time to editing map data, we hope you will consider participating.

Squadron of Biplane Spectators badge, currently the highest recognition award, is given to volunteers who submit more than 6,000 points.

Family of Floating Photogrammetrists badge is one of the new awards, which is given to volunteers who submit more than 3,000 points.

Badges awarded for submitting edits, shown from first to last: Order of the Surveyor’s Chain (25-49 points), Society of the Steel Tape ( 50-99 points), Pedometer Posse (100-199 points), Surveyor’s Compass  (200-499 points), Stadia Board Society (500-999 points), Alidade Alliance (1,000-1,999 points), and the Theodolite Assemblage (2000-2,999 points).

Historical Hydraulic Fracturing Trends and Data Unveiled in New USGS Publications

Summary: Two new U.S. Geological Survey publications that highlight historical hydraulic fracturing trends and data from 1947 to 2010 are now available

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 );



Two new U.S. Geological Survey publications that highlight historical hydraulic fracturing trends and data from 1947 to 2010 are now available.

Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in unconventional resource reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. 

“These national-scale data and analyses will provide a basis for making comparisons of current-day hydraulic fracturing to historical applications,” said USGS scientist and lead author Tanya Gallegos.

“We now have an improved understanding of where the practice is occurring and how hydraulic fracturing characteristics have changed over time.” 

This national analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 is used to identify hydraulic fracturing trends in drilling methods and use of proppants (sand or similar material suspended in water or other fluid to keep fissures open), treatment fluids, additives, and water in the United States. These trends are compared to peer-reviewed literature in an effort to establish a common understanding of the differences in hydraulic fracturing and provide a context for understanding the costs and benefits of increased oil and gas production. The publications also examine how newer technology has affected the amount of water needed for the process and where hydraulic fracturing has occurred at different points in time. Although hydraulic fracturing is in widespread use across the United States in most major oil and gas basins for the development of unconventional oil and gas resources, historically, Texas had the highest number of records of hydraulic fracturing treatments and associated wells documented in the datasets. 

These datasets also illustrate the rapid expansion of water-intensive horizontal/directional drilling that has increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increased horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. This is one example of how the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. 

The USGS report Scientific Investigation Report is available along with the companion Data Series online.

Future Wave and Wind Effects on Pacific Islands

Summary: Open-File Report 2015–1001: Future Wave and Wind Projections for United States and United States-Affiliated Pacific Islands. SANTA CRUZ, Calif. — According to a new report released by the U.S. Geological Survey, climate changes during the 21st century are expected to alter the highest waves and strongest winds across U.S. and U.S.-affiliated Pacific Islands. The detailed calculations provided in the report will be useful for managers developing coastal resilience plans or ecosystem restoration efforts, and for engineers designing future infrastructure. 

Contact Information:

Leslie  Gordon, USGS ( Phone: 650-329-4006 ); Whitney  Peterson, PICCC ( Phone: 808-687-6175 ); Tim  Stephens, UCSC ( Phone: 831-459-4352 );



Open-File Report 2015–1001: Future Wave and Wind Projections for United States and United States-Affiliated Pacific Islands.

SANTA CRUZ, Calif. — According to a new report released by the U.S. Geological Survey, climate changes during the 21st century are expected to alter the highest waves and strongest winds across U.S. and U.S.-affiliated Pacific Islands. The detailed calculations provided in the report will be useful for managers developing coastal resilience plans or ecosystem restoration efforts, and for engineers designing future infrastructure. 

Information on changes in waves and winds under global climate change is crucial to understanding the sustainability of existing infrastructure and natural and cultural resources, as well as to planning for future investments such as renewable wind and wave energy for islands, or for understanding the viability of coastal-related economic activities such as fishing and tourism. Wave- and wind-driven processes drive flooding and inundation of coastal land, potentially resulting in damage to islands’ infrastructure, fresh-water supplies, and natural resources, and harming federally protected species such as nesting seabirds. Such impacts may only be exacerbated in the future with projected trends in sea-level rise.

“With little to no publicly available historical wind and wave data for most of the U.S.-affiliated Pacific islands, and no future projections of waves and winds for different climate scenarios, there was a great science and management need to understand how waves and wind might change in future climates,” said Curt Storlazzi, USGS oceanographer and lead author of the study.

Scientists from USGS and the University of California, Santa Cruz, ran four global climate models (developed for the Intergovernmental Panel on Climate Change), using them to drive a global-wave model to look at the projected changes in wave heights, wave periods, and wave directions, and wind speed and wind direction on three Hawaiian Islands and 22 other locations on U.S.-affiliated islands in the Pacific Ocean. Modeling results project that wind and wave patterns will change over the years throughout the century, and also over certain months and seasons within each year. 

“Natural resource managers, communities, and engineers will all benefit by being able to prepare for the shifts in inundation risk shown by this study.  This work shows that the degree of change we see will depend on how greenhouse-gas emissions change,” said Jeff Burgett, Science Coordinator for the Pacific Islands Climate Change Cooperative.

Scientists first ran the models for the years 1976 – 2005 and compared them to the few available historical instrumental data in order to make sure the models were functioning properly, then ran them for the different future time spans (2026 – 2045 and 2085 – 2100) for two different climatic scenarios — increasing greenhouse-gas concentrations until mid century, followed by reduced emissions (known as scenario RCP4.5), and unfettered growth of emissions (scenario RCP8.5).

The spatial patterns and trends are mostly similar between the two different greenhouse gas concentration scenarios (scenario RCP4.5 and scenario RCP8.5), although the results of the study reveal some differences among islands. The magnitude and spatial extent of the trends are generally greater for the higher-emissions scenario (RCP8.5).

In general, extreme wave heights (the top five percent) are projected to increase from now until mid 21st century and then decrease toward the end of the 21st century. Peak wave periods (another measure of intensity) increase east of the International Date Line and are forecast to decrease west of the International Date Line. In equatorial Micronesia, extreme waves and winds are projected to undergo substantial (greater than 20 degrees) shifts in direction.

The full USGS Open-File Report 2015-1001, “Future Wave and Wind Projections for United States and United States-Affiliated Pacific Islands,” by Curt D. Storlazzi, James B. Shope, Li H. Erikson, Christie A. Hegermiller, and Patrick L. Barnard is available online. This research was supported by the Pacific Islands Climate Change Cooperative.

Natural Breakdown of Petroleum Underground Can Lace Arsenic into Groundwater

Summary: In a long-term field study, U.S. Geological Survey (USGS) and Virginia Tech scientists have found that changes in geochemistry from the natural breakdown of petroleum hydrocarbons underground can promote the chemical release (mobilization) of naturally occurring arsenic into groundwater

Contact Information:

Jon Campbell ( Phone: 703-648-4180 ); Isabelle Cozzarelli ( Phone: 703-648-5899 );



In a long-term field study, U.S. Geological Survey (USGS) and Virginia Tech scientists have found that changes in geochemistry from the natural breakdown of petroleum hydrocarbons underground can promote the chemical release (mobilization) of naturally occurring arsenic into groundwater. This geochemical change can result in potentially significant arsenic groundwater contamination. 

While arsenic is naturally present in most soils and sediments at various concentrations, it is not commonly a health concern until it is mobilized by a chemical reaction and dissolves into groundwater. Elevated arsenic levels in groundwater used for drinking water is a significant public health concern since arsenic, a toxin and carcinogen, is linked to numerous forms of skin, bladder, and lung cancer. 

For the past 32 years, a collaborative group of government, academic, and industry-supported scientists have studied the natural attenuation (biodegradation over time) of a 1979 petroleum spill in the shallow, glacial aquifer at the National Crude Oil Spill Fate and Natural Attenuation Research Site, near Bemidji, Minnesota.  

Working at this intensively surveyed site, the researchers in this USGS-led investigation focused on a specific question: whether naturally occurring arsenic found in the glacial aquifers in this area might be mobilized in the presence of hydrocarbons because of chemical interactions involving iron hydroxides which also occur naturally. To address this question, arsenic concentrations were measured for several years in groundwater and in sediment up-gradient, within, and down-gradient from the hydrocarbon plume at Bemidji. 

Carefully measured samples from the field reveal that arsenic concentrations in the hydrocarbon plume can reach 230 micrograms per liter — 23 times the current drinking water standard of 10 micrograms per liter. Arsenic concentrations fall below 10 micrograms per liter both up-gradient and down-gradient from the plume. 

The scientists attributed the elevated arsenic in the hydrocarbon plume to a series of interrelated geochemical and biochemical processes that involve arsenic and iron oxides (both are commonly found in sediments across the country) and the metabolization of carbon–rich petroleum by microbes in anoxic (low oxygen) conditions. The complex chemical process is explained further at this USGS website and in the published research article.

The results from this work also suggest that the arsenic released in the plume may reattach to aquifer sediments down-gradient from the plume. This reattachment could be considered good news for limiting the extent of the arsenic contamination in the groundwater. However, the chemical reattachment process may also be reversible, highlighting the need for long–term monitoring of arsenic and other chemicals that pose a water quality concern in areas associated with petroleum hydrocarbon leaks and spills. 

The presence and amount of naturally occurring arsenic and iron oxides and the condition of the groundwater in the study area are fairly typical of many geologic settings across the nation, suggesting that the process of arsenic mobilization that was observed in the presence of hydrocarbons is not geographically limited.  

This research was supported by the USGS Toxic Substances Hydrology Program and Hydrologic Research and Development Program, the Virginia Polytechnic Institute and State University, and the National Crude Oil Spill Fate and Natural Attenuation Research Site, a collaborative venture of the USGS, the Enbridge Energy Limited Partnership, the Minnesota Pollution Control Agency, and Beltrami County, Minnesota. By law, the USGS, a science bureau of the U.S. Department of the Interior, does not have any regulatory authority or responsibility. 

Learn more 

Cozzarelli, IM; Schreiber, ME; Erickson, ML; and Ziegler, BA. “Arsenic cycling in hydrocarbon plumes: Secondary effects of natural attenuation,” Groundwater, 21 Jan 2015. 

USGS Toxic Substances Hydrology Program 

USGS National Research Program (Water)

More Global Topographic Data to Aid Climate Change Research

Summary: Improved global topographic (elevation) data are now publicly available for most of Asia (India, China, southern Siberia, Japan, Indonesia), Oceania (Australia, New Zealand), and western Pacific Islands Enhanced elevation data for most of Asia and Oceania; third of four releases

Contact Information:

Jon Campbell ( Phone: 703-648-4180 );



Improved global topographic (elevation) data are now publicly available for most of Asia (India, China, southern Siberia, Japan, Indonesia), Oceania (Australia, New Zealand), and western Pacific Islands. See diagram below for geographic coverage.   

Similar data were previously released by USGS for most of Africa (in September 2014) and the Western Hemisphere (December). 

The data are being released following the President’s commitment at the United Nations to provide assistance for global efforts to combat climate change. The broad availability of more detailed elevation data across the globe through the Shuttle Radar Topography Mission (SRTM) will improve baseline information that is crucial to investigating the impacts of climate change on specific regions and communities. 

“We are pleased to offer improved elevation data to scientists, educators, and students worldwide. It’s free to whomever can use it,” said Suzette Kimball, acting USGS Director, at the initial release of SRTM30 data for Africa in September. “Elevation, the third dimension of maps, is critical in understanding so many aspects of how nature works. Easy access to reliable data like this advances the mutual understanding of environmental challenges by citizens, researchers, and decision makers around the globe.” 

The SRTM30 datasets resolve to 30-meters and can be used worldwide to improve environmental monitoring, advance climate change research, and promote local decision support. The previous global resolution for this data was 90-meters. 

SRTM30 elevation data are increasingly being used to supplement other satellite imagery. In India, for example, SRTM30 elevation data can be used to track changes to the Gangotri Glacier, a major source of water for the Ganges River. Changes to this glacier, which has retreated 345 meters over the past 25 years, directly affect the water resources for hundreds of millions of people on the Indian subcontinent. 

USGS online poster of the Gangotori Glacier

The National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA) worked collaboratively to produce the enhanced SRTM data, which have been extensively reviewed by relevant government agencies and deemed suitable for public release. SRTM flew aboard the Space Shuttle Endeavour in February 2000, mapping Earth's topography between 56 degrees south and 60 degrees north of the equator. During the 11-day mission, SRTM used imaging radar to map the surface of Earth numerous times from different perspectives. 

The USGS, a bureau of the U.S. Department of the Interior, distributes SRTM30 data free of charge via its user-friendly Earth Explorer website. NASA also distributes SRTM data versions through the Land Processes Distributed Active Archive Center (LPDAAC) operated by USGS along with descriptions of the various versions and processing options. 

Enhanced 30-meter resolution SRTM data for the remainder of the globe (at less than 60 deg. latitude) are scheduled to be released in the last of four releases in August 2015.    

NASA press release on SRTM data

Shaded grid over most of Asia, Japan, and Australia indicates the coverage of the third of four releases of improved topographic (elevation) data now publicly available through USGS archives. (High resolution image)