USGS News

Review of Minimum and Maximum Conservation Buffer Distance Estimates for Greater Sage-Grouse and Land-Use Activities

Summary: The U.S. Geological Survey released a report today that compiles and summarizes published scientific studies that evaluate effective conservation buffer distances from human activities and infrastructure that influence greater sage-grouse populations

Contact Information:

A.B.  Wade ( Phone: 703-648-4483 ); Carol Schuler ( Phone: 541-750-1031 );



The full report is available online.

The U.S. Geological Survey released a report today that compiles and summarizes published scientific studies that evaluate effective conservation buffer distances from human activities and infrastructure that influence greater sage-grouse populations.

Greater sage-grouse conservation buffers are specified protective distances around greater sage-grouse communal breeding locations, known as leks.

The report, prepared at the request of the Department of the Interior’s Bureau of Land Management, can help decision makers establish buffer distances for use in conservation measures for greater sage-grouse habitat.  BLM requested the report because across the 11-state range of the greater sage-grouse a wide variety of buffer distances and supporting scientific literature have been posed as appropriate for providing protections for the species.

“This report should help DOI and others as they make or refine decisions and implement conservation actions for this species,” said Carol Schuler, USGS senior science advisor for ecosystems.

USGS scientists reviewed, compiled and summarized the findings of numerous previously published USGS and non-USGS scientific studies that evaluated the influence of human activities and infrastructure on greater sage-grouse populations. The report is organized into six sections representing these different land uses or human activities typically found in land-use plans:

  • cumulative surface disturbances;
  • linear features such as active roads and highways and pipelines;
  • oil, gas, wind and solar energy development;
  • tall structures such as electrical, communication and meteorological towers;
  • low structures such as fences and buildings; and
  • activities that don’t involve habitat loss, such as noise and related disruptions. 

The buffer distances in the report reflect a radius around lek locations. Although lek sites are breeding habitats, the report’s authors emphasized that designating protective buffers around these area offer “a consistent and practical solution for identifying and conserving seasonal habitat requirements by greater sage-grouse throughout their life cycle.”

The authors noted that because of variation in populations, habitats, development patterns, social context, and other factors that for a particular disturbance type there is no single number that is an appropriate buffer distance for all populations and habitats across the greater sage-grouse range.

The buffer distance estimates in this report can be useful in developing conservation measures,” said Schuler, “but should be used in conjunction with conservation planning that considers other factors such as local and regional conditions, habitat quality, and the cumulative impact of a suite of conservation and management actions.”

The report shows lek buffer minimum and maximum distance estimates suggested in the scientific literature as well as possible minimum and maximum conservation buffer distances developed by the team of expert scientists who reviewed and synthesized the literature.

The scientific literature indicates that, in some populations, 90-95 percent of sage-grouse movements are within 5 miles (8 km) of lek sites, and that most females nest within about 3.1 miles (5 km) of the lek, suggesting considerable protection of sage-grouse could be achieved using protective measures within these generalized conservation buffer distances.  Consequently, the ranges USGS experts assessed for lower and upper buffer distance limits fall within the 3.1-5 mile radius of leks for surface disturbance, linear features, and energy development categories. The buffer distances suggested for the other 3 categories are smaller.

Greater sage-grouse occur in parts of 11 U.S. states and 2 Canadian provinces in western North America.  The U.S. Fish and Wildlife Service is formally reviewing the status of greater sage-grouse to determine if the species is warranted for listing under the Endangered Species Act.

Loon Migration Underway, Prompted by Frigid Temperatures

Summary: As freezing air swept into the Upper Midwest this past week, juvenile common loons took a cue from the weather and began their migrations to the warm Gulf of Mexico Follow the Birds Online

Contact Information:

Kevin Kenow ( Phone: 608-781-6278 ); Randy Hines ( Phone: 608-781-6398 ); Marisa Lubeck ( Phone: 303-202-4765 );



As freezing air swept into the Upper Midwest this past week, juvenile common loons took a cue from the weather and began their migrations to the warm Gulf of Mexico. 

By this past Monday, eight young loons, recently tagged by the U.S. Geological Survey and partners, had reached the Gulf of Mexico from the midwestern United States, and eight were en route to southern wintering areas. The scientists captured and radiomarked the juvenile common loons on lakes scattered across Minnesota and Wisconsin during the last two weeks of August 2014 to study the challenges facing these birds during their first two years, when they are most vulnerable.

“Midwest loons are susceptible to avian botulism in the Great Lakes and pollution found in U.S. waters during migration and overwintering,” said Kevin Kenow, USGS lead scientist for the study. “Resource managers need information on the iconic birds’ first critical years to develop effective conservation strategies.” 

Common loons are large, black-and-white, fish-eating waterbirds with haunting calls and are bioindicators, or living gages of ecosystem health, in the Great Lakes states. The survival rate of loons during their first few years of life – about 50 percent over three years – is much lower than that of adults, which have a rate of about 93 percent annually.

“Satellite transmitter and geolocator tag technologies help us learn more about the movements, habitat use and causes of mortality of young common loons, and ultimately about the health of the overall food web,” Kenow said. 

The tracking devices record daily location, temperature, light levels and pressure data used to log the foraging depths of these diving birds.

Previous band recovery data suggested that while some common loons may remain on wintering grounds year-round their first two years, there is the potential for a northward movement up the Atlantic Coast during summers. Watch where the new loons travel this year via the USGS common loon migration website.

For more information on USGS loon studies, please visit the USGS Upper Midwest Environmental Sciences Center website.

VideoUnraveling Mysteries of the Common Loon

"Teddy Bear" Unlikely to Go Extinct

Summary: The bear species nicknamed “teddy” more than a century ago that inspired the iconic stuffed toy still popular today will likely survive at least another century, according to a new U.S. Geological Survey study USGS study looks at Louisiana Black Bear Population

Contact Information:

Joseph  Clark ( Phone: 865-974-4790 ); Christian Quintero ( Phone: 813-498-5019 );



A threatened Louisiana black bear and her cubs up in a tree. (High resolution image)

The bear species nicknamed “teddy” more than a century ago that inspired the iconic stuffed toy still popular today will likely survive at least another century, according to a new U.S. Geological Survey study

The threatened Louisiana black bear, one of 18 subspecies of black bear in North America, has less than a 1 percent chance of going extinct in the next 100 years.  The bear was once found throughout Louisiana, eastern Texas, southern Arkansas and western Mississippi. Habitat loss and overhunting has since reduced and fragmented the population resulting in its listing as threatened under the Endangered Species Act in 1992.

The species was nicknamed the “teddy bear” in 1902 when President Theodore “Teddy” Roosevelt famously refused to shoot a tethered bear while on a hunting trip.

To determine the viability of the bear population today, researchers used projections of population growth over time based on capture and radio-telemetry data to estimate the bear’s extinction probability. In some instances, scientists captured and released the bears to obtain the data, while other times they collected DNA extracted from hair samples to identify individual bears. The study also used genetics and capture data to evaluate how frequently individual bears move between the fragmented subpopulations of Louisiana black bear in the Lower Mississippi Alluvial Valley. Connectivity among subpopulations of a species is important to help avoid genetic problems resulting from too much inbreeding. These findings address goals created in 1995 by the U.S. Fish and Wildlife Service for recovery.

“Estimates of a species’ viability can help wildlife managers determine the status of threatened, endangered or at-risk species and guide effective management efforts,” said Joseph Clark, the USGS research ecologist who led the study in collaboration with Jared Laufenberg from the University of Tennessee. “This study will be used by the U.S. Fish and Wildlife Service to determine whether to pursue removing the bear from the ‘threatened’ species list.”

Researchers collected data with DNA sampling, live capture, winter den visits and monitoring of radio-collared animals from 2002 to 2014. To collect the DNA samples, researchers set up barbed wire fences that bears had to cross to obtain pastry baits. This method, which does not harm the bears, results in the bears leaving their DNA in the form of hair samples on the barbs, which scientists are able to use to identify the individual identities of each bear visiting the site.   

Bears in Louisiana primarily exist in four distinct subpopulations, and data were sufficient for researchers to perform viability analyses on three of them. The probability of these bears not going extinct ranged from 29.5 percent to greater than 99 percent, depending on the subpopulation and the assumptions upon which the models were based.  However, the chances that all of the subpopulations will simultaneously go extinct, based on the most conservative models, were only 0.4 percent. The researchers also found that individual bears were moving among some subpopulations.

“The completion of this project represents many years of collaborative work and we’re excited about the results,” said Maria Davidson, Louisiana Department of Wildlife and Fisheries biologist program manager.  “The information provided by this project is based on the best available science, enabling us to make management decisions focused on the long term sustainability of the Louisiana black bear.”

Since originally being listed as threatened in 1992, the Louisiana black bear population has grown and the habitat has recovered to the extent that the U.S. Fish and Wildlife Service is considering “delisting,” or removing the bear from the threatened species list. This population growth is because of state and federal protection of the bears, a reintroduction project and habitat recovery aided by the Federal Conservation Reserve Program and the Federal Wetlands Reserve Program.

This study was completed in cooperation with Louisiana Department of Wildlife and Fisheries, U.S. Fish and Wildlife Service, University of Tennessee and Louisiana State University, among others. The full study is available online.

USGS-NASA Award Recognizes Innovations in Earth Observation

Summary: A pioneer in mapping global land cover change and the team behind the United States’ most advanced land surface mapping satellite have both been honored with the 2014 William T. Pecora Award for achievement in Earth remote sensing

Contact Information:

Jon Campbell ( Phone: 703-648-4180 );



A pioneer in mapping global land cover change and the team behind the United States’ most advanced land surface mapping satellite have both been honored with the 2014 William T. Pecora Award for achievement in Earth remote sensing. Sponsored by the Department of the Interior's U.S. Geological Survey (USGS) and NASA, the annual award was presented on Nov. 18 in Denver at the 19th William T. Pecora Memorial Remote Sensing Symposium. 

Christopher O. Justice, professor and chair of geographical sciences at the University of Maryland, College Park, was honored for advancing the understanding of the Earth by means of remote sensing. The government and industry team that built and now operates Landsat 8, the latest in the Landsat series of satellites, was also acknowledged for their contributions to study of Earth’s land surface and coastal regions. 

Landsat 8, launched as the Landsat Data Continuity Mission in February 2013, provides frequent global medium-resolution data for science and applications. Landsat 8 extends the unprecedented Landsat data record which now covers more than four decades. 

Justice has made numerous scientific contributions to the study of land use and land cover change and the detection and analysis of wildfires, expanding the use of Earth-observing data from NASA’s Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. 

An innovator in the use of global daily polar orbiter satellite data for mapping and monitoring land cover, Justice provided the vision that led to the first global 1-km data Advanced Very High Resolution Radiometer (AVHRR) dataset. He leads long-term monitoring of the Congo Basin using Landsat data, an effort that provides invaluable information on the state of the forests of central Africa. 

Justice is perhaps best known for his research on wildfires. First using AVHRR data and now MODIS and VIIRS, he successfully developed algorithms for fire detection and burned area estimation. He spearheaded the development of a rapid response system that reveals the location of fires shortly after images are obtained. This system has provided significant practical benefits in many parts of the world and is regularly used in the strategic deployment of fire-fighting assets. 

Justice now leads agricultural monitoring efforts. With colleagues from NASA and the U.S. Department of Agriculture, he leads the development of a system for forecasting agricultural production based primarily on MODIS data. He is working on transitioning the system to use VIIRS data to ensure longer-term continuity. 

The Landsat 8 Team is a partnership between USGS  and NASA with strong contributions from industry and the academic community. The Landsat 8 Project Office at NASA’s Goddard Space Flight Center in Greenbelt, Md., oversaw development and launch of the satellite. The USGS Earth Resources Observation and Science Center in Sioux Falls, South Dakota, managed ground system development and assumed operation of the mission following in-orbit commissioning. 

Landsat 8’s Thermal Infrared Sensor (TIRS) was built at NASA Goddard. Ball Aerospace & Technology Corporation was responsible for the Operational Land Imager (OLI). Orbital Sciences Corporation built the spacecraft, and United Launch Alliance provided the Atlas 2 launch vehicle. The Landsat Science Team of university and government scientists provided scientific and technical input to a wide range of mission activities. 

The Landsat 8 Team met the challenge of continuing and advancing the Landsat legacy of observations. The OLI sensor on Landsat 8 is a substantial technical advancement over the Thematic Mapper sensors flown since 1982 on Landsats 4, 5, and 7. In addition, the TIRS instrument utilizes a two-band thermal infrared sensor to more effectively address atmospheric contamination in the thermal infrared spectrum. Mission performance has exceeded expectations, providing more imagery, higher quality measurements, and new capabilities over previous missions.  

The Pecora Award was established in 1974 to honor the memory of a former USGS director and Interior undersecretary. William T. Pecora was influential in the establishment of the Landsat satellite program, which created a continuous record of Earth's land areas spanning a period of more than 40 years.

 

Southern Beaufort Sea Polar Bear Population Declined in the 2000s

Summary: In a new polar bear study published today, scientists from the United States and Canada found that during the first decade of the 21st century, the number of polar bears in the southern Beaufort Sea experienced a sharp decline of approximately 40 percent

Contact Information:

Paul Laustsen ( Phone: 650-329-4046 ); Yvette  Gillies ( Phone: 907-786-7039 );



ANCHORAGE, Alaska — In a new polar bear study published today, scientists from the United States and Canada found that during the first decade of the 21st century, the number of polar bears in the southern Beaufort Sea experienced a sharp decline of approximately 40 percent.  

The scientists, led by researchers at the U.S. Geological Survey, found that survival of adult bears and cubs was especially low from 2004 to 2006, when most of the decline occurred. 

“Of the 80 cubs observed in Alaska from 2004 to 2007, only 2 are known to have survived,” said Jeff Bromaghin, USGS research statistician and lead author of the study. 

Survival of adults and cubs began to improve in 2007 and the population stabilized at approximately 900 bears in 2010, the last year of the study. However, the survival of juvenile bears declined throughout the 10-year study period (2001-2010), suggesting that conditions remained unfavorable for young bears newly separated from their mothers.

Scientists suspect that limited access to seals during both summer and winter contributed to low survival during this period. Although some bears in this population now come onshore during the autumn open water period, most stay with the sea ice as it retreats north into the Arctic Basin and far from shore where few seals are thought to occur. Similarly, the thinning and increasingly mobile winter ice is susceptible to breaking up and rafting, which can create rough and jumbled ice conditions that may make it harder for polar bears to capture seals. However, other potential causes, such as low seal abundance, could not be ruled out. 

“The low survival may have been caused by a combination of factors that could be difficult to unravel,” said Bromaghin, “and why survival improved at the end of the study is unknown. Research and monitoring to better understand the factors influencing this population continue.”

The Polar Bear Specialists’ Group of the International Union for the Conservation of Nature will use the new estimate for the southern Beaufort Sea population to track historic (within the last 25 years) and current (within the last 12 years) trends in the 19 populations worldwide. Currently, four populations, including the southern Beaufort Sea population, are considered to be declining, five are stable, one is increasing, with the remainder considered to be data deficient.

Collaborators with USGS in the study included Environment Canada, University of Alberta, U.S. Fish and Wildlife Service, Polar Bears International, and Western Ecosystems Technology.

The polar bear was listed as globally threatened under the Endangered Species Act in 2008 due to concerns about the effects of sea ice loss on their populations. 

The paper “Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline” was published today in early online view in the journal Ecological Applications.

 

For further information:

Learn more about USGS Quantitative Ecology program that originated this study, then visit the USGS Polar Bear program website. The USGS conducts this work under its Changing Arctic Ecosystems Initiative

Summary of polar bear population status per 2013 from the Polar Bear Specialists Group.

Multimedia

Find more polar bear photos in the USGS multimedia gallery.

Check out our polar bear POV video in the USGS multimedia gallery. 

USGS Assesses Current Groundwater-Quality Conditions in the Williston Basin Oil Production Area

Summary: Energy development in the Williston Basin oil production area of Montana and North Dakota, which includes the Bakken and Three Forks Formations, has not affected shallow groundwater quality, according to a recently published study in the journal Groundwater

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 ); Rod  Caldwell ( Phone: 406-457-5933 ); Joel Galloway ( Phone: 701-250-7402 );



USGS scientist prepares to sample a domestic well in the Bakken Formation oil and gas production area of North Dakota. (High resolution image)

Energy development in the Williston Basin oil production area of Montana and North Dakota, which includes the Bakken and Three Forks Formations, has not affected shallow groundwater quality, according to a recently published study in the journal Groundwater. The paper is based on water samples collected by U.S. Geological Survey scientists from 30 randomly distributed, non-federal domestic wells screened in the upper Fort Union Formation. 

The study compared concentrations of several chemicals to health-based drinking-water standards, analyzed correlations between concentrations and oil and gas well locations and evaluated methane for indications of deep production-zone gases. 

“These results are good news for water users, and the data provide a valuable baseline against which future water-quality data can be compared,” said Peter McMahon, a USGS hydrologist and lead author of the study. “However, it is important to consider these results in the context of groundwater age.” 

Most of the sampled water was more than 1,000 years old based on carbon-14 dating and predates oil and gas development in the study area. Results suggest that shallower wells screened at the water table would be better suited for detecting contamination associated with recent surface spills than the domestic wells sampled by this study. 

Old groundwater could be directly contaminated by recent subsurface leaks from improperly cemented oil and gas wells, but groundwater velocities calculated from carbon-14 ages indicated that the contaminants, if present in groundwater, would not have moved far from their source. 

“The groundwater age results indicate that a long-term commitment to monitoring is needed to assess the effects of energy development on groundwater quality in the Williston Basin production area,” said McMahon. 

The study was the first comprehensive regional assessment of shallow groundwater quality and age in the Williston Basin production area. Inclusion of groundwater-age measurements in assessing the effects of energy development on groundwater quality is a new approach that provides valuable context for water-quality data and can lead to more effective monitoring programs.

This report is a product of the USGS Groundwater Resources Program that provides scientific information and develops interdisciplinary understanding necessary to assess and quantify the availability of the nation’s groundwater resources. Program priorities include conducting regional and national overviews, scientific assessments of critical groundwater issues, field methods and model development and improved access to fundamental groundwater data.